8yl (gwm g 4l

A 3T



Topics
this session is based on chapter 17 of Microsoft Visual C# Step by Step, 8th Edition

* Implement queue

e Generics

* Class generic Tree



model a first-in, first-out structure such as a queue

* class Queue
* Fields
* Constructor
* Method Enqueue
* Method Dequeue

class Queue{

public Queue() {...}

public Queue(int size) {...}

public void Enqueue(int item) {...}
public int Dequeue() {...}



model a first-in, first-out structure such as a queue

* Fields

private const int DEFAULTQUEUESIZE = 100;
private int[] data;

private int head =0, tail = 0;

private int numElements = 0;



model a first-in, first-out structure such as a queue

¢ Constructor

public Queue(){
this.data = new int[DEFAULTQUEUESIZE];

}
public Queue(int size){
if (size > O){
this.data = new int[size]; }
else {
throw new ArgumentOutOfRangeException("size","Must be greater than zero"); }



model a first-in, first-out structure such as a queue

* Method Enqueue

public void Enqueue(int item){
if (this.numElements == this.data.Length){
throw new Exception("Queue full");}
this.data[this.head] = item;
this.head++;
this.head %= this.data.Length;
this.numElements++;



model a first-in, first-out structure such as a queue

* Method Dequeue

public int Dequeue(){
if (this.numElements == 0){
throw new Exception("Queue empty");}

int queueltem = this.data[this.tail];
this.tail++;

this.tail %= this.data.Length;
this.numElements--;

return queueltem;



Using queue of int

Queue queue = new Queue(); // Create a new Queue
queue.Enqueue(100);

queue.Enqueue(-25);

gueue.Enqueue(33);
Console.WriteLine(S"{queue.Dequeue()}"); // Displays 100
Console.WriteLine(S"{queue.Dequeue()}"); // Displays -25
Console.WriteLine(S"{queue.Dequeue()}"); // Displays 33



Queue of other types

the Queue class works well for queues of ints,

but what if you want to create queues of strings, or floats, or even
gueues of more complex types such as Circle ?

One way around this restriction is to specify that the array in the
Queue class contains items of type object



Queue of object

update the constructors, and modify the Enqueue and Dequeue
methods to take an object parameter and return an object



class Queue{

private object[] data;
public Queue(){

this.data = new object[DEFAULTQUEUESIZE];}
public Queue(int size){

this.data = new object[size];}
public void Enqueue(object item){

..}
public object Dequeue(){

object queueltem = this.data[this.tail];
return queueltem;}



Use queue of object

Queue queue = new Queue();
Horse myHorse = new Horse();

queue.Enqueue(myHorse); // Now legal — Horse is an object

Horse dequeuedHorse = (Horse)queue.Dequeue();
// Need to cast object back to a Horse



easy to write code with run-time error

Queue queue = new Queue();
Horse myHorse = new Horse();
queue.Enqueue(myHorse);

Circle myCircle = (Circle)queue.Dequeue(); // run-time error

throws a System.InvalidCastException exception at run time.



Another disadvantage of using the object approach

e consume additional memory and processor time if the runtime needs
to convert an object to a value type and back again

Queue queue = new Queue();
int mylnt = 99;

queue.Enqueue(mylint); // box the int to an object

mylnt = (int)queue.Dequeue(); // unbox the object to an int



* Although boxing and unboxing happen transparently, they add
performance overhead because they involve dynamic memory
allocations.

* This overhead is small for each item, but it adds up when a program
creates queues of large numbers of value types.



The generics solution

» C# provides generics to remove the need for casting, improve type
safety, reduce the amount of boxing required, and make it easier to
create generalized classes and methods.

* Generic classes and methods accept type parameters,
which specify the types of objects on which they operate



generic class

* you indicate that a class is a generic class by providing a type parameter in
angle brackets

class Queue<T>

{

The T in this example acts as a placeholder for a real type at compile time



class Queue<T>{

private T[] data; // array is of type 'T' where 'T' is the type parameter
public Queue(){

this.data = new T[DEFAULTQUEUESIZE]; // use 'T' as the data type
}

public Queue(int size){

this.data = new T[size];

}
public void Enqueue(T item){ // use 'T' as the type of the method parameter

}
public T Dequeue() {// use 'T' as the type of the return value

T queueltem = this.data[this.tail]; // the data in the array is of type 'T'
return queueltem;



Queue of specific type

Queue<int> intQueue = new Queue<int>();
Queue<Horse> horseQueue = new Queue<Horse>();

Now:
compiler has enough information to perform strict type checking
no longer need to cast data when you call the Dequeue method

compiler can trap any type mismatch errors early



intQueue.Enqueue(99);
int myInt = intQueue.Dequeue(); // no casting necessary
Horse myHorse = intQueue.Dequeue();
// compiler error: cannot implicitly convert type 'int' to 'Horse'



struct Person{...}

Queue<int> intQueue = new Queue<int>();
Queue<Person> personQueue = new Queue<Person>();

compiler also generates the versions of the Enqueue and Dequeue
methods for each queue : does not require boxing or unboxing

public void Enqueue(int item);public int Dequeue();
public void Enqueue(Person item);public Person Dequeue();



Type parameter

* The type parameter does not have to be a simple class or value type

Queue<Queue<int>> queueQueue = new Queue<Queue<int>>();



note

* A generic class can have multiple type parameters

* You can also define generic structures and interfaces by using the
same type-parameter syntax as for generic classes



Generics vs. generalized classes

 Generalized

_ generalized class designed to take parameters that can be cast to
different types.

~ There is a single implementation of this class, and its methods take
object parameters and return object types

 Generics
Queue<T> class

You can think of a generic class as one that defines a template that is
then used by the compiler to generate new type-specific classes on demand

Queue<int> and Queue<Horse> : distinctly different types



Generics and constraints

* limit the type parameters of a generic class

public class PrintableCollection<T> where T : Iprintable

the compiler checks to be sure that the type used for T actually
implements the IPrintable interface; if it doesn’t, it stops with a
compilation error.



Example
Creating a generic class

* Binary tree

* A binary tree is a recursive (self-referencing) data structure that can
be empty or contain three elements: a datum, which is typically
referred to as the node, and two subtrees, which are themselves

binary trees.

* The real power of binary trees becomes evident when you use them
for sorting data. If you start with an unordered sequence of objects
of the same type, you can construct an ordered binary tree and then
walk through the tree to visit each node in an ordered sequence



Left subtree —» +— Right subtree

A diagram showing the structure of a binary tree.

—

Empty trees —I



If the tree, B, is empty
Then
Construct a new tree B with the new item I as the node, and empty left and
right subtrees
Else
Examine the value of the current node, N, of the tree, B
If the value of N is greater than that of the new item, I
Then
If the left subtree of B is empty
Then
Construct a new left subtree of B with the item I as the node, and
empty left and right subtrees

Else
Insert I into the left subtree of B
End If
Else
If the right subtree of B is empty
Then

Construct a new right subtree of B with the item I as the node, and
empty left and right subtrees
Else
Insert I into the right subtree of B
End If
End If
End If



Walk through tree

If the left subtree is not empty
Then
Display the contents of the left subtree
End If
Display the value of the node
If the right subtree is not empty

Then
Display the contents of the right subtree

End If



The System.|Comparable and
System.|Comparable<T> interfaces

* The algorithm for inserting a node into a binary tree requires you to
compare the value of the node that you are inserting with nodes
already in the tree.



Add Comparability
before

class Circle

{ public Circle(int initialRadius)
{ radius = initialRadius;
}
public double Area()
: return Math.PI * radius * radius;
}

private double radius;



Add Comparability
System./IComparable

class Circle : System.IComparable

{

public int CompareTo(object obj)

{
Circle circObj = (Circle)obj; // cast

if (th'is_Area() == CirCObj.Area())
return 0;

if (this.Area() > circObj.Area())
return 1;

return -1;



Add Comparability
|[Comparable<T> interface (int CompareTo(T other);)

class Circle : System.IComparable<Circle>

i
public int CompareTo(Circle other)
{
return 0;
if (this.Area() > other.Area())
return 1;
return -1;
}



